Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline
نویسندگان
چکیده
Studies on hot carrier science and technology associated with various types of nanostructures are dominating today's nanotechnology research. Here we report a novel synthesis of polyaniline-gold (PAni-Au) nanocomposite thin films with gold nanostructures (AuNs) of desired shape and size uniformly incorporated in the polymer matrix. According to shape as well as size variation of AuNs, two tunable plasmonic UV-Visible absorption bands are observed in each of the nanocomposites. Plasmonic devices are fabricated using PAni-Au nanocomposite having different UV-Visible plasmon absorption bands. However, all the devices show strong photoelectrical responses in the blue region (400-500 nm) of the visible spectrum. The d-band to sp-band (d-sp) transition of electrons in AuNs produces hot holes that are the only carriers in the material responsible for photocurrent generation in the device. This work provides an experimental evidence of novel plasmonic hot hole generation process that was still a prediction.
منابع مشابه
A Comparison of Photocatalytic Activities of Gold Nanoparticles Following Plasmonic and Interband Excitation and a Strategy for Harnessing Interband Hot Carriers for Solution Phase Photocatalysis
Light driven excitation of gold nanoparticles (GNPs) has emerged as a potential strategy to generate hot carriers for photocatalysis through excitation of localized surface plasmon resonance (LSPR). In contrast, carrier generation through excitation of interband transitions remains a less explored and underestimated pathway for photocatalytic activity. Photoinduced oxidative etching of GNPs wit...
متن کاملTheoretical predictions for hot-carrier generation from surface plasmon decay
Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited 'hot' electrons and holes generated by plasmon decay, before inelastic ...
متن کاملHot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles
The conversion of light to electrical and chemical energy has the potential to provide meaningful advances to many aspects of daily life, including the production of energy, water purification, and optical sensing. Recently, plasmonic nanoparticles (PNPs) have been increasingly used in artificial photosynthesis (e.g., water splitting) devices in order to extend the visible light utilization of ...
متن کاملPlasmon-induced optical anisotropy in hybrid graphene-metal nanoparticle systems.
Hybrid plasmonic metal-graphene systems are emerging as a class of optical metamaterials that facilitate strong light-matter interactions and are of potential importance for hot carrier graphene-based light harvesting and active plasmonic applications. Here we use femtosecond pump-probe measurements to study the near-field interaction between graphene and plasmonic gold nanodisk resonators. By ...
متن کاملInvestigation of localized surface plasmon/grating-coupled surface plasmon enhanced photocurrent in TiO2 thin films.
We fabricated plasmonic gold nanoparticle (AuNP)-TiO2 nanocomposite films and measured the photocurrent that originates from the water-splitting reaction catalyzed by the AuNP-TiO2 nanocomposite photoelectrocatalytic (PEC) electrode. The localized surface plasmon resonance (LSPR) of the gold nanoparticles affected the generation of photocurrent by TiO2 upon illumination with visible light. Elec...
متن کامل